結型器件:基于PN結、肖特基結或其延伸結構的兩端器件,主要基于光生伏特效應實現(xiàn)光電信號轉換,這類器件結構簡單,光響應度強,是最為常見的光電探測器構型。
單溝道2D-FET:該器件為三端器件,因此可以獲得材料基本的輸運特性,場調控特性。相比于兩端器件,其柵控端也帶來了更大的調控自由度。FET結構是比較普適的器件結構
異質結二維場效應晶體管(2D-FET):本結構與單層溝道場效應晶體管(FET)的關鍵區(qū)別在于其功能層由兩種或以上的二維材料構成的結型結構。通過柵極電壓,可以同時調節(jié)結區(qū)的勢壘高度和溝道中的載流子濃度。
多柵設計:鑒于二維材料所具有的超薄溝道和卓越的場效應控制能力,可以設計出多種柵極結構以進一步優(yōu)化器件性能。比如,上下雙柵結構,局域柵結構、分立柵結構。
浮柵設計:浮柵結構最初被應用于NAND存儲器中,以實現(xiàn)非易失性存儲?;诟沤Y構和二維材料可以實現(xiàn)的應用包括:①光存儲:②神經形態(tài)計算:③光邏輯:
垂直溝道設計:作為一種獨特的器件設計,垂直溝道結構充分利用了二維材料的特性。通過巧妙地利用二維材料在厚度方向上的傳輸能力,該設計能夠實現(xiàn)量子維度的彈道輸運現(xiàn)象。
Barristor型器件:也被稱為可變勢壘晶體管,通過柵極電壓控制肖特基勢壘,實現(xiàn)對電流的開關控制,其本質上是借助了二維材料的量子電容特性。
復合功能型器件:二維材料的“積木組裝”特性,可以將不同的二維材料器件組合堆疊還能將不同的器件乃至功能模塊組合堆疊。
參考文獻:
1. Yang, Y., et al., Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors. ACS Nano, 2019. 13(8): p. 8804-8810.2. Krishnamurthi, V., et al., Liquid-Metal Synthesized Ultrathin SnS Layers for High-Performance Broadband Photodetectors. Adv Mater, 2020. 32(45): p. e2004247.3. Wang, X., et al., Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics. Adv. Mater., 2015. 27(42): p. 6575-+.4. Xue, H., et al., A MoSe2/WSe2 Heterojunction-Based Photodetector at Telecommunication Wavelengths. Advanced Functional Materials, 2018. 28(47).5. Zong, X., et al., Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light Sci Appl, 2020. 9: p. 114.6. Lu, Q., et al., Low-Noise Mid-Infrared Photodetection in BP/h-BN/Graphene van der Waals Heterojunctions. Materials (Basel), 2019. 12(16).7. Yang, S., et al., Monolithic Interface Contact Engineering to Boost Optoelectronic Performances of 2D Semiconductor Photovoltaic Heterojunctions. Nano Lett., 2020. 20(4): p. 2443-2451.8. Yu, W.J., et al., Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 2013. 8(12): p. 952-8.9. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS 2. Nat. Nanotechnol., 2013. 8(7): p. 497-501.10. Yang, H., et al., Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science, 2012. 336(6085): p. 1140-1143.11. Huh, W., et al., Synaptic Barristor Based on Phase-Engineered 2D Heterostructures. Advanced Materials, 2018. 30(35): p. 1801447.12. Mennel, L., et al., Ultrafast machine vision with 2D material neural network image sensors. Nature, 2020. 579(7797): p. 62-66.13. Pan, C., et al., Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nature Electronics, 2020. 3(7): p. 383-390.14. Yan, J., et al., Dual-gated bilayer graphene hot-electron bolometer. Nat Nanotechnol, 2012. 7(7): p. 472-8.15. Choi, D.-H., et al., Engineering performance of barristors by varying the thickness of WS2. Current Applied Physics, 2017. 17(1): p. 11-14.16. Paul, T., et al., A high-performance MoS2 synaptic device with floating gate engineering for neuromorphic computing. 2D Materials, 2019. 6(4).17. Gong, F., et al., High‐Sensitivity Floating‐Gate Phototransistors Based on WS2 and MoS2. Advanced Functional Materials, 2016. 26(33): p. 6084-6090.18. Nazir, G., et al. Gate Tunable Transport in Graphene/MoS2/(Cr/Au) Vertical Field-Effect Transistors. Nanomaterials, 2018. 8, DOI: 10.3390/nano8010014.19. Vaziri, S., et al., A Graphene-Based Hot Electron Transistor. Nano Letters, 2013. 13(4): p. 1435-1439.20. Britnell, L., et al., Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012. 335(6071): p. 947-950.21. Kim, C.O., et al., High photoresponsivity in an all-graphene p-n vertical junction photodetector. Nat Commun, 2014. 5: p. 3249.22. Massicotte, M., et al., Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun., 2016. 7: p. 12174.23. Liao, F., et al., A Dual-Gate MoS2 Photodetector Based on Interface Coupling Effect. Small, 2020. 16(1): p. 1904369.24. Zhou, J., et al., Charge Sampling Photodetector Based on van der Waals Heterostructures. Advanced Optical Materials, 2022. 10(24): p. 2201442.25. Liu, W., et al., Graphene charge-injection photodetectors. Nature Electronics, 2022. 5(5): p. 281-288.26. Yu, J., et al., Bioinspired mechano-photonic artificial synapse based on graphene/MoS(2) heterostructure. Sci Adv, 2021. 7(12).27. Seo, S., et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nature Communications, 2018. 9(1): p. 5106.28. Zhu, Y., et al., Non-volatile 2D MoS(2)/black phosphorus heterojunction photodiodes in the near- to mid-infrared region. Nat Commun, 2024. 15(1): p. 6015.29. Ning, H., et al., An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nature Nanotechnology, 2023. 18(5): p. 493-500.30. Shen, T., et al., Electric Field Screening in Gate‐Tunable van der Waals 2D‐Metal/InSe Junctions. Advanced Functional Materials, 2022. 32(47).31. Tong, L., et al., 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science, 2021. 373(6561): p. 1353-1358.32. Wan, X., et al., A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? npj 2D Mater. and Appl., 2017. 1(1): p. 4.33. Yu, T., et al., Graphene Coupled with Silicon Quantum Dots for High-Performance Bulk-Silicon-Based Schottky-Junction Photodetectors. Advanced Materials, 2016. 28(24): p. 4912-4919.34. Son, B., et al., Efficient Avalanche Photodiodes with a WSe2/MoS2 Heterostructure via Two-Photon Absorption. Nano Letters, 2022. 22(23): p. 9516-9522.